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A B S T R A C T

Humans can readily assess their degree of confidence in their decisions. Two models of confidence computation
have been proposed: post hoc computation using post-decision variables and heuristics, versus online compu-
tation using continuous assessment of evidence throughout the decision-making process. Here, we arbitrate
between these theories by continuously monitoring finger movements during a manual sequential decision-
making task. Analysis of finger kinematics indicated that subjects kept separate online records of evidence and
confidence: finger deviation continuously reflected the ongoing accumulation of evidence, whereas finger speed
continuously reflected the momentary degree of confidence. Furthermore, end-of-trial finger speed predicted the
post-decisional subjective confidence rating. These data indicate that confidence is computed on-line,
throughout the decision process. Speed-confidence correlations were previously interpreted as a post-decision
heuristics, whereby slow decisions decrease subjective confidence, but our results suggest an adaptive me-
chanism that involves the opposite causality: by slowing down when unconfident, participants gain time to
improve their decisions.

1. Introduction

Confidence is defined as our degree of belief that a certain thought
or action is correct (Grimaldi, Lau, & Basso, 2015; Meyniel, Sigman, &
Mainen, 2015). There is growing evidence that humans and other an-
imals possess a sense of confidence in their decisions (Baranski &
Petrusic, 1994; Grimaldi et al., 2015; Kepecs & Mainen, 2012; Kiani &
Shadlen, 2009; Meyniel, Schlunegger, & Dehaene, 2015). Although
confidence can be subject to various biases, the very fact that animals
and humans are able to approximate the likelihood of a decision being
correct is an impressive feat that fits with the increasingly influential
view that the brain is able to compute with probabilities and their
distributions (Beck et al., 2008; Kording & Wolpert, 2004; Pouget,
Drugowitsch, & Kepecs, 2016). However, precise knowledge of how
confidence is computed is still lacking. Two classes of models of con-
fidence computation can be contrasted. One class emphasizes that
confidence is computed in a post hoc manner, in order to retro-
spectively evaluate a recent decision (Balakrishnan & Ratcliff, 1996;
Ferrell, 1995), using heuristics and post-decision variables (Kahneman
& Tversky, 1982; Pleskac & Busemeyer, 2010; Resulaj, Kiani, Wolpert,
& Shadlen, 2009). For instance, one model proposes that subjects use a
summary of the decision process, namely, reaction time, as an index to
confidence: trials that are responded fast are judged as more likely to be

correct, which is indeed a valid heuristic in many situations (Kiani,
Corthell, & Shadlen, 2014). Another computational model proposes that
confidence is based not only on the evidence accumulated to make the
decision, but also on additional evidence accumulated after the decision
(Pleskac & Busemeyer, 2010). In general, this approach tends to view
confidence judgment as a slow and imperfect mechanism, that follows
decision making and uses memory and heuristics to re-evaluate our
decisions (Dunlosky & Metcalfe, 2008).

Another class of models, however, emphasizes that a sense of con-
fidence can emerge from the decision-making process itself. According
to this account, confidence is computed online throughout the decision-
making process, in parallel to or even as part of the accumulation of
evidence that supports the decision (Fetsch, Kiani, & Shadlen, 2014;
Kiani & Shadlen, 2009; Meyniel et al., 2015). For example, one com-
putational model proposes that the brain can process probability dis-
tributions and therefore, throughout the decision-making process, car-
ries a full representation of the probability that a given inference is
correct (Pouget et al., 2016). Such online monitoring of confidence
could be helpful in regulating our decisions while they are being made,
for instance in order to withhold decision and look for more informa-
tion (Meyniel et al., 2015).

The online and post-decisional accounts of confidence are not mu-
tually exclusive but complementary: even if confidence is computed
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online, it can still be submitted to various post-decisional transforma-
tions and biases before one reaches a conscious, reportable level of
subjective confidence in a decision. However, while evidence for post-
decisional confidence processing is well-established (Pleskac &
Busemeyer, 2010; Resulaj et al., 2009), the existence of online, pre-
decisional confidence monitoring processes is still debated (Pouget
et al., 2016).

Measuring pre-decision confidence poses methodological chal-
lenges. Most metacognitive paradigms are retrospective, asking parti-
cipants to rate their subjective confidence in a past decision (Dunlosky
& Metcalfe, 2008). Other paradigms, allowing the participant to opt out
of the decision (Fetsch, Kiani, Newsome, & Shadlen, 2014; Kiani &
Shadlen, 2009), provide behavioral information about the decision
(when the participants do not opt out) or about confidence (by com-
paring opt-out and no-opt-out trials), but not about both on a given
trial. Implicit measures of confidence derived from neural recordings
(Charles, King, & Dehaene, 2014; Fetsch et al., 2014; Kepecs, Uchida,
Zariwala, & Mainen, 2008; Kiani & Shadlen, 2009; Kiani et al., 2014)
avoid these problems, but they rely on invasive electrophysiological or
costly brain-imaging measures from which it remains difficult to dis-
entangle decision and confidence signals. Here, we show how an ele-
mentary behavioral measurement – tracking the participants’ finger
movement during decision making – can be used to analyze the deci-
sion-making process and obtain separate implicit measures of a pro-
spective decision and the associated confidence.

30 human adults performed a simple two-alternative forced-choice
task on a touchscreen. On each trial, 1, 3, or 5 arrows, each pointing
leftward or rightward, were presented sequentially, and participants
were asked to decide whether most arrows pointed to the left or to the
right. This paradigm is inspired by the classical Shadlen-Newsome
motion direction detection task in which sensory evidence must be
accumulated across time (Shadlen & Newsome, 2001). However, our
stimuli were not continuous but employed few discrete bouts of evi-
dence, thereby allowing for a precise analysis of changes in decision
making (de Lange, Jensen, & Dehaene, 2010; de Lange, van Gaal,
Lamme, & Dehaene, 2011; Yang & Shadlen, 2007). In the Discussion,
we elaborate further on the similarities and differences between our
paradigm and classical paradigms of perceptual decision making. Cru-
cially, our participants responded by continuously moving their finger
on the touchscreen from a fixed starting point to one of two response
buttons, without ever stopping (Fig. 1). Previous studies showed that
changes in finger direction reflect intermediate stages of decision
making (Berthier, 1996; Erb, Moher, Sobel, & Song, 2016; Friedman,
Brown, & Finkbeiner, 2013; Pinheiro-Chagas, Dotan, Piazza, &
Dehaene, 2017; Resulaj et al., 2009). Here, given previous results on
confidence and decision times (Baranski & Petrusic, 1994; Kiani et al.,
2014), we propose that, additionally, the instantaneous finger speed
reflects online fluctuations in the participant’s prospective confidence
that the final decision will be correct.

2. Method

2.1. Participants and task

The participants were 30 university students (mean age=25;11,
SD=4;0) and gave informed consent prior to participating. One par-
ticipant rated almost all trials (97%) as “100% confident” and was
excluded. On each trial, participants saw on a tablet computer a se-
quence of arrows that included one arrow (2 possible sequences, each
presented 64 times), 3 arrows (23= 8 sequences, 16 times each) or 5
arrows (32 sequences, 12 times each). The numbers of arrows were not
disclosed to the participants. They were instructed to indicate where
the majority of arrows pointed to by dragging their finger from a
starting point at the bottom of the screen to a response button on the
top-right or top-left corner of the screen (Fig. 1a). Touching the starting
point triggered a central fixation dot on the top of the screen, where
arrows appear, and finger movement (crossing y=50 pixels from the
bottom of screen) triggered the arrow sequence. We used an Apple iPad
air with 1024 × 768 resolution (5.2 px/mm), black background, white
arrows (150 × 50 px), and grey response buttons (200 × 100 px) and
starting point (60 × 40 px). Lifting the finger in mid-trial, moving the
finger backwards, or starting a trial with sideways (rather than upward)
movement, aborted the trial. Trials were also aborted when the finger
movement was too slow (excluding a grace period of the trial’s first
300ms): less than 3 s per trial or less than 1.5 s to reach the first third of
the screen. Aborted trials were excluded from analysis and presented
again later in the experiment. Immediately after each trial, participants
rated retrospectively their subjective confidence about their decision
(i.e. the probability of the decision being correct) on a continuous
vertical scale (top= “I’m sure”; middle= “I have no idea”;
bottom= “I’m sure I was wrong”). The scale was presented in the
middle of the screen, i.e., to rate their confidence, the participants first
had to move their finger from the top of the screen, where it was at the
end of the trial, back to the middle of the screen. Statistical analyses
were done with Matlab and R (R Core Team, 2015). In http://
trajtracker.com, we provide our trajectory-tracking analysis tools as
well as a Python-based experimentation software equivalent to the one
that we used here. The trajectory raw data is enclosed as Supplemen-
tary online material.

2.2. Data processing and terminology

Evidence is the sum of all stimulus arrows (→ is +1, ← is −1).
|Evidence| is its absolute value. Accuracy is the fraction of correct re-
sponses. Confidence rating refers to the participant’s post-decision sub-
jective rating (0–100 scale). Movement time is the time from the first
arrow onset (which is immediately after the finger started moving) until
the finger reached a response button, and average speed is the inverse of
movement time. Time point refers to a particular time within a trial,

Fig. 1. Task and screen layout. On each trial, 1, 3, or 5 arrows, each pointing left or right, were presented sequentially. Participants dragged their finger on a touchscreen towards the
response button corresponding to the majority of arrows. Their finger movement was continuously recorded. The onset of the first arrow was triggered by finger movement. After
touching a response button, a slider appeared and participants rated their confidence about their decision, from “certainly correct” to “certainly incorrect”. A color version of this figure is
available in the online version of the article.
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specified relative to the onset of the first arrow.
Trajectory: The x, y coordinates were recorded at 16 Hz (σ=1)

using the screen resolution (1024 × 768 px), and transformed to
100 Hz using cubic spline interpolation. x= 0 is the middle of the
screen. Momentary x, y speeds and accelerations per time point were
obtained at the derivative of the x, y coordinates, after applying a
Gaussian smoothing (σ=20ms) before derivation. End speed is the
speed 100ms before reaching the response button. We used a 100ms
gap to exclude the period in which the finger may sharply slow down as
it approaches the response buttons; we note that the end-speed results
reported below were replicated for a range of delays.

Speed, unless stated otherwise, refers to the finger’s momentary
speed along the y-axis, i.e. the speed with which it moves towards the
top of the screen, where the response buttons are placed. Note that
finger movement in the horizontal axis may be driven by the ongoing
decision (aiming rightwards or leftwards), so that horizontal speed may
reflect the buildup of the decision. We decided a priori to analyze speed
only along the y-axis precisely to avoid this confound, and to show that
speed specifically indexes confidence rather than the buildup of the
decision. In the Results section, we bring several arguments to justify
this decision from the data. Nevertheless, in the Supplementary online
material (Fig. S5), we show that all critical results are replicated if one
considers the xy-speed instead of speed along the y-axis only, and
therefore that our conclusions are robust to this choice.

2.3. Regression analyses

Correlations among various parameters (confidence rating, accu-
racy, finger coordinates or speed, specific arrows, etc.) were examined
using regression analyses. Specific regression models are detailed in the
text below. In these regressions, predictors denoting the direction of a
specific arrow were coded as+ 1 (right) and −1 (left). Accuracy was
coded as 0, 1. In some regressions, the specific sequence of arrows was
added as a covariate; in such cases, each sequence was coded as a
binary predictor (i.e., for 5 arrows, which allow for 32 possible se-
quences, there were 32 such covariate predictors).

When the dependent variable and the predictors were trial-level
measures, one regression was run per participant. When the dependent
variable was a within-trajectory measures (e.g., x coordinate, y speed),
one regression was run per participant and per time point, in 50ms
intervals. The significance of a specific predictor in a specific time point
was assessed at the group level by comparing the participants’ regres-
sion coefficients against 0 with one-tailed t-test.

2.4. The onset time of each arrow’s effect

To identify when each arrow started affecting the finger movement,
we examined how the finger x coordinates were affected by that arrow.
On each time point, in 10ms intervals, the finger x coordinates were
submitted to a two-way repeated measures ANOVA with two within-
participant factors: the arrow direction, and the specific sequence of
previous arrow directions. The arrow’s onset time was defined as the
first time point in which the main effect of arrow direction was sig-
nificant (p< .05) and remained so during at least 50 ms.

Using an identical method with y speed as the dependent variable,
we identified when each arrow started affecting the finger speed.

2.5. Changes of mind

Another type of analysis aimed to examine whether certain situa-
tions promoted changes of mind (Resulaj et al., 2009). Such changes of
mind may be revealed by situations where the finger changed its
course, i.e., sudden increases/decreases in the horizontal speed. These
“acceleration bursts” were defined as trajectory sections in which the
unsigned acceleration exceeded 144 pixels/s2 during at least 70ms.
Bursts that started before 100ms were excluded, as they may result

from pre-stimulus default behavior (Dotan, 2017). Acceleration was the
2nd derivative of the x coordinates, after applying a Gaussian
smoothing before each derivation (σ=100ms, but the effects de-
scribed below were replicable with several different σ values). In the
text below, we describe specific analyses that examined how the
number of acceleration bursts per trial (denoted #Acc) was affected by
various parameters. By applying the same analysis method to the y axis,
we also examined the number of vertical speed fluctuations per trial.

A related measure is the number of times a trajectory bends to the
right or to the left during a trial. This measure is useful to control for
putative motor effects related with finger deviations. A bend in the
trajectory was defined as a trajectory section of at least 100ms during
which the finger continuously changed its direction in either clockwise
or counter-clockwise manner, excluding very small bends (Δθ<5°
between start and end of a bend; but including these small bends
yielded essentially the same results).

3. Results

3.1. End-of-trial measures

Analysis of end-of-trial measures – accuracy, subjective confidence
rating, and average finger speed – indicated that they were all sensitive
to trial difficulty. Trials with fewer arrows had overall higher accuracy,
higher confidence ratings, and faster finger movements (Fig. 2a). This
effect was confirmed by three separate repeated measures ANOVAs on
the per-stimulus average accuracy, confidence ratings, or speed. In each
of these three ANOVAs, the number of arrows (1, 3 or 5) was a within-
subject factor and the participant was the random factor (all F
(2, 56)> 110, p< .001).

Within the 5-arrow trials (on which we focus from now on, but see
Fig. S7 for replication with 3-arrow trials), accuracy, confidence rating,
and speed were higher for trials with more evidence (repeated measures
ANOVAs on the per-stimulus average accuracy, confidence ratings, or
speed, all with a numeric factor of |Evidence|= the absolute difference
between the numbers of left and right arrows: all F(2, 56)> 68,
p< .001). More specifically, both accuracy and confidence rating
(averaged per stimulus) varied monotonically with the ratio between
left and right evidence (Fig. S1).

To examine the contribution of each of the five consecutive arrows
to the choice of a response button, we used logistic regression: for each
participant, the response was regressed against the 5 arrow directions.
The per-participant regression β values were then compared to 0 with t-
test (excluding one participant whose regression did not converge).
Each of the 5 arrows had a significant positive effect (all t(27)> 5.8,
one-tailed p< .001, FDR corrected). As previously reported (de Lange
et al., 2010), arrows were considered even when they were redundant:
late arrows affected the decision even in trials where a decision could
be reached based on the first 3 or 4 arrows. This was demonstrated with
logistic regressions on the response against arrow direction, now lim-
ited to subsets of trials where an early decision was possible. One such
regression included only trials where the sufficient information was
provided at the 3rd arrow (e.g., →→→←←). The response was re-
gressed on the directions of the 4th and 5th arrows. A second regression
included trials where sufficient information was provided at the 4th
arrow (e.g., →→←→←). The response was regressed on the 5th arrow
direction. In both analyses, the per-participant regression β values of
each arrow were significantly higher than zero (all t(28)≥ 2.8, one-
tailed p< .01, FDR corrected). Still, late arrows were underweighted
relatively to early arrows: in a repeated measures ANOVA with the all-
trials logistic regression β values as dependent variable and the arrow
position in the sequence as a within-subject numeric factor, the arrow
position had a significant effect (F(1, 27)= 46, p< .001).
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3.2. Real-time accumulation of evidence

We next showed that finger movement tracked the pre-decision
accumulation of evidence. Plotting the average finger position as a
function of time yielded a clear tree structure that closely reflected the
different sequences of arrows (Figs. 3a and S2a). This plot suggests that
each arrow started affecting the finger x coordinate shortly after its
presentation. The onset time of each arrow’s effect was calculated as
described in Methods (Section 2.4; plotted in Fig. 3a as vertical lines).
All arrows had a significant effect on the finger x coordinate, starting on
average 406ms after the arrow appeared on screen, and separated by
335ms for consecutive arrows, in agreement with the actual stimulus-
onset-asynchrony (SOA) of 300ms.

We then examined the buildup of each arrow’s effect throughout the
trial. At each time point, the finger horizontal position (x coordinate)
was regressed per participant against the five arrows, coded as 5 pre-
dictors (Fig. 3b). All arrows had significant effects (per-participant β
values significantly higher than 0 in a t-test), which started on average
417ms after the arrow onset and remained significant in all time points
until the end of the trial. These results were robust to the exclusion of
error trials and the easiest trials (Fig. S3), as well as to the choice of
different measures for finger movement (Fig. S4).

The separable effects of each arrow suggest that evidence is accu-
mulated incrementally within a trial. Alternatively, it is possible that
participants made only a single finger deviation during a given trial,
and the effect of successive arrows would have resulted from averaging
trials with different deviation latencies. However, our data ruled out
this possibility, because several changes of mind were observed within

trials: we observed that trials with a higher number of arrow direction
changes (#ADC) had a greater number of horizontal acceleration/de-
celeration bursts (#Acc) per trial (Figs. 3c and S6a, b; #Acc was cal-
culated as defined in Section 2.5). This effect was statistically reliable:
when #Acc was regressed for each participant against |Evidence| and
#ADC, the per-participant β values of the #ADC predictor were sig-
nificantly higher than zero (t(28)= 4.49, one-tailed p< .001). We note
that the #Acc-by-#ADC slope was low (only ∼0.15 horizontal accel-
eration/deceleration bursts per ADC). This could indicate either that
participants did not change their mind on every single arrow direction
change, or that our measure did not detect all changes of mind.

3.3. Confidence

3.3.1. End-of-trial measures
We now turn to the analysis of confidence, starting with end-of-trial

measures. Post-decision confidence ratings correlated with the partici-
pants’ objective accuracy: regressing confidence against accuracy
yielded a mean coefficient β=0.48 (S.E.M.= 0.03), significantly
higher than zero (t(28)= 18.9, p< .001). This accuracy-confidence
correlation was partly, but not solely, driven by stimulus properties (see
Fig. 2c): it survived the inclusion of sequence type as covariate
(β=0.38, t(28)= 12.2, p< .001), indicating that, even for a fixed
stimulus, participants tracked their trial-by-trial fluctuations in the
decision accuracy.

However, we also found specific cases in which confidence rating
and accuracy dissociated: these variables were differentially affected by
the number of arrow direction changes (#ADC). For a fixed amount of
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Fig. 2. Effect of the stimulus sequences on end-
of-trial measures of accuracy, confidence, and
speed. (a) All variables decreased for higher
number of arrows and increased for more evi-
dence. (b) A greater number of arrow-direction-
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cluded here). (c) The average accuracy, speed,
and confidence for each stimulus. Error bars
show one inter-subject standard error. A color
version of this figure is available in the online
version of the article.
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evidence (|Evidence| = 1), a greater #ADC reduced confidence ratings,
but increased accuracy (Fig. 2b). To confirm this accuracy-confidence
dissociation, accuracy and confidence were averaged per sequence type
and participant, Z-scored separately, and submitted together to re-
peated-measures ANOVA whose factors were the measure type (accu-
racy, confidence rating) and #ADC. A significant interaction confirmed
the dissociation (F(1, 28)= 72.9, p< .001).

Larger #ADC also resulted in lower finger speed (Fig. 2b), sug-
gesting that finger speed tracked subjective confidence even when
confidence deviated from the objective accuracy. The decreasing effect
of #ADC on confidence ratings and finger speed was observed even
within objectively correct trials (comparing the per-participant con-
fidence-by-#ADC or speed-by-#ADC regression slopes against 0 with t-
test, t(28)> 7.6, p< .001), i.e., this effect was not caused by slower
movement and lower confidence on error trials. In summary, end-of-
trial measures indicated that average speed varied more closely with
subjective confidence than with objective accuracy.

3.3.2. Within-trial confidence
We next examined whether the instantaneous finger speed tracked in

real time the participant’s prospective confidence that the final decision
will be correct. Plotting the momentary y-speed as function of time
again yielded a clear tree structure (Fig. 4a), now reflecting fluctuations
in confidence: the finger accelerated after arrows that increased the
amount of evidence (Δ|Evidence|> 0) and decelerated after arrows
that decreased it (see green circles in Fig. 4a). These speed changes are
only partially visible in this figure, because the averaging over trials
smoothed the speed. For a more detailed statistics of these effects, see
Fig. S2b. The effect of Δ|Evidence| on speed was confirmed by regres-
sing speed on Δ|Evidence| (coded as 1 or −1) of the 2nd to the 5th
arrows: the per-participant coefficients were significantly higher than 0
for each arrow (Fig. 4b).

If finger speed reflects momentary confidence, then arrow direction
changes (ADC), which decrease the post-decision confidence (see

above), should also decrease the momentary speed. This was indeed the
case: when speed was regressed against ADC and Δ|Evidence| in a
multiple regression, both effects were significant (Fig. 4c; the predictors
were Δ|Evidence| of the 2nd–5th arrows as before, and direction
changes in the 3rd to 5th arrows, each coded as 0, 1). The ADC effect on
speed cannot be reduced to a pure motor effect (e.g., slowing down
whenever the finger changes its direction following an ADC): the re-
gression results survived the inclusion of the trajectory curvature as an
additional covariate (measured as | |dθ

dt after smoothing θ with a Gaus-
sian, σ=20ms).

Importantly, neither the Δ|Evidence| effect nor the ADC effect can
be explained as an artifact of the other, because each is observed in-
dependently of the other when inspecting specific subsets of the data.
First, the ADC effect was observed even when Δ|Evidence| was fixed
(this happens whenever previous arrows sum to |Evidence| = 0, so that
a new arrow necessarily increases |Evidence| regardless of its direction;
see grey circles in Fig. 4a). Second, conversely, an effect of Δ|Evidence|
was observed even when it went against an arrow direction change,
such as when a repetition of the same arrow direction decreased |Evi-
dence| and a direction change increased |Evidence| (e.g., the 4th arrow
in →→←→ vs. →→←←; see red circles in Fig. 4a). The independent
effect of Δ|Evidence| shows that finger speed depends on the evidence
accumulated throughout the trial and not just on local factors such as
arrow direction changes.

Speed fluctuations did not result merely from averaging across
trials, because the number of within-trial speed fluctuations correlated
with the number arrow direction changes (Figs. 4d and S6c, d): the
number of within-trial speed fluctuations (#Acc, see Section 2.5) was
regressed for each participant against |Evidence| and the number of
arrow direction changes (#ADC), and the per-participant β values of
the #ADC predictor were significantly higher than zero (t(28)= 4.86,
one-tailed p< .001).

Does speed reflect online confidence, or could it solely reflect the
momentary amount of evidence? The finding reported above, that
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speed is affected not only by momentary evidence, but on top of it also
by arrow direction changes, already suggests that speed is not merely
about evidence. We now further tested whether trials with more speed
fluctuations also had lower subjective confidence. We regressed, per
participant, the confidence ratings against the number of y accelera-
tions and decelerations per trial (#Acc, defined in Section 2.5). We also
included as covariates the response accuracy (coded as 0 or 1), the
specific sequence of arrows (coded as 32 binary predictors), and the
trial serial number and its square (to control for drifts in confidence
during the experiment session). The per-participant regression coeffi-
cients of #Acc were significantly negative (t(28)= 3.13, one-tailed
p= .001). We verified that this result cannot be reduced to a pure
motor effect: conceivably, the finger could slow down whenever it
changes its direction, which may have been sufficient to explain the
correlation between confidence and #Acc. However, the confidence-

#Acc correlation survived the inclusion of the number of finger direc-
tion changes (number of bends, described in Section 2.5) as an addi-
tional covariate in the regression (t(28)= 2.64, one-tailed p= .003).

A second finding that ties instantaneous speed with confidence is
rooted in the hypothesis that a participant’s post-decision confidence
rating is derived from the online confidence shortly before the time of
rating (near the end of the trial). This hypothesis predicts that the
correlation between post-decisional confidence ratings and online
prospective confidence (indexed as y-speed) would build up during the
trial and culminate near the end of the trial. This was indeed the case
(Fig. 4e). The correlation between end-speed and confidence rating was
partly driven by the properties of the sequence type and the partici-
pants' accuracy, but did not reduce to it, because it survived the in-
clusion of sequence type and accuracy as covariates: for each partici-
pant, we regressed confidence ratings against the end-speed (y speed
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Speed is a ected by:
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Arrow direc on unchanged

Fig. 4. The finger speed indexes the online computation of
confidence. (a) Average y speed as a function of time for
each sequence type (pooling together each pair of mirror
sequences). The vertical lines show the time when an
arrow started having a significant effect on the y speed
(this time was calculated as described in Section 2.4). Two
factors determined the effect of a given arrow: [1] The
arrow’s contribution to the absolute amount of evidence:
increasing |Evidence| caused higher speed. [2] The arrow’s
agreement with the direction of the previous arrow: a
change of direction decreased speed. The colored circles
highlight examples of different combinations of these two
factors. Either factor alone cannot explain the data: arrow
direction changes affect speed even for fixed Δ|Evidence|
(grey circles), and Δ|Evidence| affects speed even when its
effect is opposite to that of the arrow direction change (red
circles). (b) The time course of the effect of each arrow on
finger speed. For each participant and each time point, the
momentary y speed was regressed on the Δ|Evidence|
provided by the 2nd to 5th arrows. (c) An extended re-
gression model shows that, similarly to the post-decision
confidence ratings, speed was not only affected by the
accumulation of evidence, but also decreased locally fol-
lowing changes in the arrow direction. (d) The number of
per-trial acceleration/deceleration bursts increased with
the number of arrow direction changes, indicating within-
trial fluctuations in speed. (e) The momentary y speed
correlates with the post-decision confidence rating (r cal-
culated per participant and then averaged), and the cor-
relation increases towards the end of a trial. A color ver-
sion of this figure is available in the online version of the
article.
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100ms before the end of the trial), the accuracy, the sequence type as
32 binary predictors, and the trial number and its square (to account for
drift in confidence during the experiment). The speed regression coef-
ficients were significantly higher than zero (t(28)= 6.4, one-tailed
p< .001, mean β=0.08). We acknowledge that although this corre-
lation is significant across participants, it is low. This indicates other
factors (e.g., accuracy, sequence type) also strongly account for the
confidence ratings; it also suggests that our measure may suffer from
noise and that additional factors may be at play. Nevertheless, end-
speed predicted confidence rating better than several other speed
measures, such as average speed; movement time (which is simply the
inverse of average speed); peak y speed; peak y acceleration; Δspeed
around the peak acceleration time (defined, for peak acceleration time
Tacc, as yspeedTacc+50ms− yspeedTacc−50ms); the number of y accelera-
tion/deceleration bursts per trial (see Section 2.5); and the absolute
value of the end-of-trial x speed. None of these factors had a significant
effect when added to the regression model (for all of them, t
(28)< 1.16, one-tailed p> .13), and none decreased the weight of the
end-speed factor. The finding that the speed effect cannot be reduced to
an effect of average speed or movement time (=

average speed
1 ) is especially

important: it refutes the alternative explanation of the speed-confidence
correlation as resulting from a post-decision process that heuristically
uses movement time as an index of confidence (Kiani et al., 2014).

A third finding that ties instantaneous speed with confidence is that
end-speed correlated with subjective confidence more than with ob-
jective accuracy: for each participant, we regressed end-speed either
against confidence or against accuracy, in both cases with the sequence
type (32 binary predictors), the trial number, and its square as cov-
ariates. The confidence-based regression model yielded better end-
speed estimates than the accuracy-based regression model (comparing
the per-participant regression MSEs, paired t(28)= 2.09, one-tailed
p= .02). With xy-speed as the speed measure, this last finding did not
reach significance (the two models had similar MSEs, paired t
(28)= 0.9, one-tailed p= .18). Note, however, that this is the only
finding that was not replicated with xy-speed.

We conclude with a note on the use of y-speed rather than the
tangential speed (“xy-speed”). We made this choice a priori, assuming
that subject’s choice translates into movements along the x-axis
whereas subject’s confidence translates into faster movements towards
the top of the screen where the response buttons are located. Restricting
the speed analyses to the y-axis was therefore intended to avoid con-
founding effects between choices and confidence. However, we ac-
knowledge that y-speed may not be independent from movement along
the x-axis: y-speed could be lower when the finger bends sideways,
thereby creating an artificial negative correlation between y-speed and
sideways movement. To address this concern, we included movements
along the x-axis as covariates in our regression analyses, as described
above. We also tested directly that x-speed did not negatively correlate
with y-speed: we regressed y-speed against |x-speed|, with the specific
arrow sequence as covariate (coded as 32 binary predictors) to allow for
stimulus-specific effects. This regression was run per participant and
per time point in 50ms intervals. The per-participant regression coef-
ficients of x speed were not significantly lower than zero in any time
point. Adding the confidence rating as another covariate yielded es-
sentially the same results. Last, we show in Fig. S5 that all major speed-
related results were replicated when using xy-speed instead of y-speed.

4. Discussion

4.1. Pre-decision computation of confidence

Our decision-making paradigm presented participants with short
sequences of discrete bouts of evidence (left and right arrows), and
recorded their pointing trajectories and post-decision confidence rat-
ings. The results indicate that finger direction and finger speed convey

distinct information, respectively about choice and confidence. The
observation of systematic fluctuations in the momentary speed during
the trial therefore implies the existence of a continuous, on-line, pre-
decisional computation of confidence.

The conclusion that the finger momentary speed reflects confidence
is supported by several findings. First, whereas the finger directions
continuously reflected the accumulation of evidence presented, speed –
similarly to subjective confidence ratings – was additionally modulated
by reversals in the arrow directions within the sequence of stimuli:
finger movement was faster when an arrow direction agreed with the
previous arrow, and slower when the arrow direction changed; and a
larger number of arrow reversals yielded a larger number of finger
accelerations and decelerations per trial. These speed fluctuations
clearly reflected confidence, because more within-trial acceleration/
deceleration bursts correlated with lower post-decisional subjective
confidence ratings. Importantly, these findings cannot be attributed to
differences between the effects of arrows in different positions within
the arrow sequence, because the findings are based solely on compar-
isons between arrows in a given position. Second, the end-of-trial speed
reliably predicted the subjective confidence ratings on top of the sti-
mulus, accuracy, and movement time, indicating that confidence is
affected not only by evidence and decision accuracy but also by addi-
tional factors, indexed by the momentary speed. Last, the end-of-trial
speed correlated with confidence rating more than with the decision
accuracy, indicating that speed reflects confidence rather than accu-
racy. These findings support the dissociation between confidence and
decision accuracy, and point to the finger speed as a unique index of
confidence.

Importantly, our findings support the existence of pre-decision on-
line prospective confidence, but they do not rule out, or even deny, the
existence of processes that further shape the retrospective subjective
confidence after a choice was made. The existence of such post-deci-
sional processes was well-established by other studies (Pleskac &
Busemeyer, 2010; Resulaj et al., 2009). The paradigm we proposed here
may potentially serve as a method to assess the relationship between
prospective and retrospective confidence.

4.2. Measuring decision and confidence

Several previous studies have shown that movement trajectories can
reveal how decisions fluctuate in real time according to the evidence
stream (Resulaj et al., 2009; van den Berg, Anandalingam, et al., 2016)
and its changes (Kiani et al., 2014). Our paradigm, however, offers
three major enhancements: first, the nearly-continuous measure of de-
cision allowed us to track several changes of mind per trial (Resulaj
et al., 2009) and relate them to the precise timing with which discrete
bouts of evidence are accrued. Second, finger tracking can monitor not
only the unfolding decision process (de Lange et al., 2010, 2011), but
also the associated fluctuations in confidence. Third, finger tracking
measures confidence implicitly, without requiring any additional in-
struction or response. This is a major advantage over explicit methods
such as asking participants to report confidence and decision simulta-
neously (van den Berg, Anandalingam, et al., 2016) or allowing them to
opt out of decision when unconfident (Fetsch et al., 2014; Kiani &
Shadlen, 2009). The measure of finger speed can be applied to any
decision task, without any substantial modification, instruction, or
training, so it should find a broad range of applications (including in
young children or animals). A caveat is that, by nature, the implicit
measure proposed here is only indirectly related to subjective con-
fidence, and the tightness of this relationship could be questioned.
However, we reported several features of this measure that strongly
argue for a tight relationship with subjective confidence.

Studies of decision making often used continuous stimuli – e.g.,
detect the predominant motion direction in a cloud of moving dots
(Shadlen & Newsome, 2001). A major source of uncertainty in this
paradigm is perceptual: the task is hard because most dots move
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randomly, so subjects must accumulate evidence over time to average
out this noise. In contrast, our paradigm (previously used by de Lange
et al., 2010, 2011) presented discrete bouts of evidence as clearly
visible arrows, so the perceptual uncertainty was presumably low. In-
deed, the participants were nearly flawless in the single-arrow trials,
indicating that they could easily discriminate the arrow directions.
Nevertheless, in trials with multiple arrows they made many errors,
indicating that our task involves uncertainty, yet from other, non-per-
ceptual sources. Arguably, to tap the central (as opposed to sensory)
decision mechanisms, a task with low perceptual uncertainty may even
be an advantage, as it may help narrowing the source of uncertainty to
the decision mechanisms (rather than to perceptual mechanisms).
Conceivably, there are two different sources of non-perceptual un-
certainty in our task. One source pertains to the process that accumu-
lates evidence. Indeed, a recent study showed that the accumulation of
perceptual evidence was the main source of noise in tasks that involve
such accumulation (Drugowitsch, Wyart, Devauchelle, & Koechlin,
2016; but see Brunton, Botvinick, & Brody, 2013 for an opposite view).
Another source of uncertainty pertains to the termination of the accu-
mulation process: in any given trial, our participants did not know in
advance the number of arrows, i.e., when the accumulation of evidence
would end. Possibly, these two types of uncertainty may determine two
different dimensions of confidence: retrospective (the evidence accu-
mulated so far) and prospective (also taking into account uncertainty
regarding the end of the accumulation process).

In spite of the methodological differences between our task and
decision-making tasks with continuous stimuli, our data replicated
several patterns previously observed in continuous-stimuli tasks. First,
increasing the amount of evidence increased the accuracy, confidence,
and speed (Fig. 2a; Kiani & Shadlen, 2009; Kiani et al., 2014). Second,
for a constant sum of evidence ( −Evidence Evidenceleft right), confidence
levels were lower for larger total |left evidence| + |right evidence| –
more arrows in our case (Figs. 2a and S1), and longer stimuli in pre-
vious studies (Kiani et al., 2014, Fig. 6). Third, similarly to Kiani et al.
(2014), we observed that higher confidence was associated with faster
decision. These similarities suggest that our paradigm and the random-
dot kinematogram task tap overlapping mechanisms.

4.3. The computation of online confidence

Our findings imply that confidence is computed on-line, but also
that this computation is imperfect. In our task, it was affected by the
accumulated evidence, but it was also biased, as changes in arrow di-
rection reduced confidence. Analogous results were observed during
MEG recordings in the same task, where arrow direction changes
caused additional activation, irrespectively of the amount of evidence
collected (de Lange et al., 2010). Importantly, this increased activation
occurred not only in sensory areas, but also in fronto-central areas, in
accord with our finding that direction changes affected decision. Al-
though this bias remains to be fully understood, a possible explanation
is that the changes in perceptual evidence strain the neural mechanisms
of decision making due to the need to inhibit and/or reverse the current
decision. Such mechanism would agree with studies showing that the
processing of incoming evidence is distorted towards previously-accu-
mulated evidence (Russo, Meloy, & Wilks, 2000), and could also explain
why the effect of late arrows is smaller than that of earlier arrows
(Fig. 3b).

An open question, not resolved by our data, is the exact mechanism
that calculates online confidence. One possibility is that the momentary
online confidence derives from current evidence but also from the
participant’s expectation about future observations that may reverse the
current decision. For example, if an arrow sequence starts with →←, an
ideal observer should expect the decision to occur after the next arrow
in case this is a 3-arrow trial, and after up to 3 more arrows in a 5-arrow
trial. But if the sequence starts with →→, the expected decision time is
shorter. These expectations can be used to compute online confidence,

because they are tightly correlated with the probability that the al-
ready-accumulated evidence would agree with the final decision.
Nevertheless, this mechanism, in which both evidence and expectations
can be directly derived from the arrows presented, cannot fully account
for confidence in our task: first, we observed the speed-confidence
correlation even when controlling for the specific arrow sequence.
Second, even when the arrow sequence allowed an early decision (e.g.,
sequences starting with →→→), the late arrows were not ignored but
continued affecting speed.

Another open question, also not resolved by our data, is whether the
online confidence computation is continuous or proceeds in discrete
steps (Latimer, Yates, Meister, Huk, & Pillow, 2015; Shadlen et al.,
2016). An extreme possibility is that not only confidence, but even the
decision is calculated in discrete steps, i.e., the participant’s response in
a given trial is preceded by several interim decisions to deviate left or
right (Fishbach, Roy, Bastianen, Miller, & Houk, 2007; Friedman et al.,
2013; van den Berg, Zylberberg, Kiani, Shadlen, & Wolpert, 2016).
Under this view, what we measured here was not a pre-decision con-
fidence, but the post-decision confidence of interim decisions. We note,
however, that this view seems impossible to refute behaviorally, be-
cause its loose definition of “decision” implies by definition that no pre-
decision behavior can ever be measured. Neurophysiological measures
may be more appropriate to tackle the issue of continuous versus dis-
crete computation (Latimer et al., 2015).

4.4. Does speed affect subjective confidence or vice versa?

While several aspects of our data indicate that online confidence
correlates with the momentary finger speed, this correlation remains
compatible with either direction of causality. One view, promulgated
here, is that online confidence determines the momentary speed. Such
causality is useful, and thus provides a principled reason for the speed-
confidence correlation: slowing down when unconfident gives more
time for decision making, and this strategy may therefore optimize the
reward rate, much like the setting of optimal decision bounds does
(Bogacz, Brown, Moehlis, Holmes, & Cohen, 2006). In this respect, our
finding is reminiscent of speed optimization in motor control, where
movement time in reaching tasks depends on the target’s angular size
(Fitts, 1954). Fitts’ law indicates that movement speed can be finely
tuned as a function of anticipated difficulty. Our data show that it is
also modulated on-line by the difficulty of the ongoing decision. This
view is compatible with studies showing that confidence is used as
input to subsequent decisions (Dayan & Daw, 2008; Middlebrooks &
Sommer, 2012; Purcell & Kiani, 2016; van den Berg, Zylberberg, et al.,
2016; Vickers, 1979) and to the selection of high-level problem-solving
strategies (Ball, Onarheim, & Christensen, 2010).

The opposite view is that finger speed affects the post-trial ratings of
subjective confidence. This is essentially the proposition of Kiani et al.
(2014): they proposed that subjective confidence varies with decision
duration (=

average speed
1 ) (see also Patel, Fleming, & Kilner, 2012). Our

analyses refute the specific assertion that the relevant factor is the de-
cision duration: the confidence ratings of our participants correlated
with the end-of-trial speed more than with the decision duration. More
importantly, even if Kiani et al.’s specific model was amended to con-
sider the end-of-trial speed rather than the decision duration, their
model would still remain with the assumption that confidence depends
on speed rather than vice versa. Under this assumption, a mechanism
would be needed to explain why the fluctuations in momentary speed
closely track the absolute evidence in the stimulus stream. As we saw
earlier (Fig. 4a, red circles), local factors such as changes in arrow di-
rection indeed matter but they do not suffice to explain these fluctua-
tions, as the tracked variable has all the characteristics of a confidence
measure. Conversely, our hypothesis offers a potential alternative in-
terpretation for Kiani et al.’s (2014) correlation between decision
duration and confidence. Their critical finding was that experimentally
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increasing the decision duration, without changing the amount of visual
evidence, resulted in lower confidence reports. However, they length-
ened the decision by adding reversals in stimulus movement direction.
If these reversals were perceived similarly to our arrow direction
changes, this may explain the lower confidence reports without calling
for a speed→ confidence causality.

4.5. Conclusion

We demonstrated that finger speed during decision making provides
an implicit online measure of instantaneous confidence that is pre-
dictive of future explicit confidence ratings. Our findings indicate that
confidence is computed continuously, online, throughout the decision-
making process, thus lending support to models of the brain as a device
that computes with probabilistic estimates and probability distributions
(Meyniel et al., 2015, 2015; Pouget et al., 2016). In the future, the
simple behavioral method presented here should provide a more direct
access into this computation and its biases.
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